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are assumed to depend only on (t,x). 

If the function pm is upper (lower) semicontinuous, then by /4/ only the second (first) 
player in general has an optimal strategy. Therefore, in this case, we only have a pursuit 
(evasion) problem. We see that Proposition 1 on pursuit (Proposition 2 on evasion) of a 
fuzzy set starting from a fuzzy starting position holds in this case also. 

I would like to thank A.I. Subbotin for useful comments. 
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ON THE SMALL VIBRATIONS OF A STRATIFIED CAPILLARY LIQUID* 

S.T. SIMAKOV 

An initial-boundary value problem is considered for the equation which 

describes the vibrations of an ideal, stratified liquid occupying the lower 

half space in the Boussinesq approximation. The Vaisala-Brunt frequency 

is assumed to be constant. The boundary conditiononthe planar boundary 

is a combination of the conditions on the solid cover and the free surface 

and, moreover, the latter contains a term which takes account of capil- 

larity. A formulation of the problem is given, its solutionisconstructed 

and its behaviour at long times is investigated. 

1. Formulation of the problem. Let us assume that the stratified liquid occupies 

the half space R_3 = {z=&, x2, r,)I%<U)* We denote by n, the part of the plane ZQ = 0 

which is the surface of contact between the liquid and the solid cover and, by n,, the'set 

of points with which the free surface of the liquid in the unperturbed state coincides, that 

is, II, = {x1.z3 = O}\ II,. For convenience, we introduce into R’ the sets X, and Z, which 

are associated with n0 and II, in the following manner: 

ni={Z153=O/\X'=(51r52)E~i} (i=O,l) 

We require that 2, should be a bounded domain with a smooth boundary 32,. Let us 

consider the following problem: 

A,Q + o,~A+ = 0, s,< 0, t> 0 (1.1) 

U (z, 0) = U, (z, 0) = 0 (1.3 

*Prikl.Matem.Mekhan.,53,1,66-73,1989 
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(1.3) 

Here 

f (x’, t) E C(S) (IO, Tl, w,-1 (X0)) n co(*) (IO, Tl, wz-’ (Zo)) 
1 

VT>O; Ai= 
c 

-& 
k=1 b 

art0 = f~ 1 x3 = 0 ,fj XI E az,) 

Co(k) (IO, TJ, H) = {‘P (x’, t) I cp E C(")(lO, TJ, H) /2 D,’ ‘p (r’r 
t = 0) = 0 (I = 0, . . ., k - 1)) 

The meaning of the scalar function u(x,2) has been described in /I./. The boundary 
condition (1.3) is the condition that the vertical component of the velocity field on the 
solid cover should vanish. The first condition of (1.4) corresponds to the specification of 
a perturbation on the free surface and the term oAz%, corresponds to the capillarity. The 
second equality of (1.4) is the condition for the conservation of the wetting angle during the 
course of the motion /2/ (it is assumed that the solid cover has a finite thickness and that 
the liquid does not overflow across its upper edge). 

Hence, the small motions of a stratified, capillary liquid occupying a basin are modelled. 
The basin may be considered as being unbounded and infinitely deep below an ice field III, 
having a part of its surface n,, free from ice. 

The limits of applicability of the model being considered are determined by the usual 
requirements of a linearized model and the Boussinesq approximation. The condition on the 
free surface in dimensional variable has the form 

(6 - UJP~-~ (0) AZ) nr, + (avat + 02) oh, = f (t’, t) 

The case when D =0 (gravitational surfaces and internal waves) has been considered 
I.n /3/. Next, it is everywhere assumed that cr>O, that is, gravitational-capillary waves 
are considered. 

We shall call the set of all functions v(x, t)* defined on R_3 x 10,m) such that 

for any compact QE R_g and 
We shall assume that the 

the class of smoothness K and 

k = 0, 1, 2; I, m = 0,1; i, j -71 1, 2, 3 

any T>O, the class of smoothness K. 

function u(x,t), which is regular at infinity /l/, belongs to 
satisfies Eq.Cl.1) and the boundary conditions (1.2) in the 

classical sense and the boundary conditions (1.3) and (1.4) in a sense defined below, is the 
solution of the problem in question. 

Definition. A function u(x,t) from the smoothness class satisfies the boundary conditions 
(1.3) and (1.41 if, simultaneously, 

1) a function dX,U (x', 1) exists which possesses the properties: &,n (x's t) E Wz? (X,), 
Vt>, 0, dx,u (r', t) = 0 when X'E X,, t>0 uniformly with respect to t E IO, TJ, VT > 0; 

II d& (I', 4 - h, (5, 4 IlL,W --f 0 as x3 -+O(S is an arbitrary compact in Rz); 

2) a function yu (x', t) cs CO@)JIO, Tl, L, (S)) exists such that 

11 at u (I, tptk - If,% b', G Ilr&) -+ 0 

uniformly with respect to TV IO, Tl for any T>O as z3 +O(S is an arbitrary compact 
in R"; k = 0, 1, 2); 

3) the equality 

M,u, 111 + ((W -t- w,Y Y u, ‘I)L.,GJ = (f, 4 
‘tirl E W2’ GJ 

(1.5) 

holds. 
In (1.5) (f,q) is the result of the action of the functional fG @‘t-‘(&) on the func- 

tion. A scalar product in Wzl(Z,J is denoted by [,I 
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I% 111 = (9, rl)scz,, “I- (J tvcp, Vrlhr,, + tJx tcp* +&3r,, 

We note that, if 

d,u (5', t) E C(2) (C,), f (x', t) !zz L, (X,), vt 2 0 

satisfaction of Eq.Cl.5) implies the conditions 

(1 - uA2) &,u f (W + o,,~) yu Ir. = f (r', t) 

8 (d&an f xd,,u 18% = 0 

Hence, it is assumed that the boundary conditions are satisfied in a weak sense. 
Since the inequalities 

I (f. (Ph) I G II f IIL,(Z.) II cp IlL(EJ < c II cp II+ 
and (11 r~111, = [cp, cpp/*) hold when cp E W21(&,) and te -&(W, it follows from Riesz's theorem 

that an element GfE ii’,’ exists which is unique such that (f,cp)Ltcx,> = [Gf,ql and, moreover, 

IIGf Ii* = llf II_ = sup 
I (fs (P)L*(P.) I 

w=~2Gf II ‘p ll+ 

By virtue of this equality, a continuous extension of G on the whole of W2-1(X,) exists 
for which we retain the earlier notation. It is possible to set up the chain of inequalities 

It follows from (1.6) that 

G (D,"yu (z', t)) = DtkGyu (.z', t) (k = 0, 1, 2) 

Gf (x', t) E 1-3~) (lo, Tl, W,l (Z,)) 

when f (d, t) E Ok) ([O, 2’1, w2-l (xe)). 
ft can be shown that ker G = 0. 
By making use of the operator G, we obtain from (1.5) the equivalent condition 

Id+ + (Q2 -I- 022) Gyn, ql = [Gf, rll, vq E Wz’ (2,) 

and the equivalent equation in W2l (X0) 

a+ -t- (Dtz + w.2) 6% = Gf 

The following theorem holds subject to the condition for a solution to exist. 

f1.7) 

Theorem 1. The solution of the problem in question is unique. 
The proof is carried out using the energy relationship*. (*This relationship can be 

obtained as in the paper: Simakov S.T., On the theory of internal and surface waves, Moscow, 
1987, 45 pp.; deposited in The All-Union Institute for Scientific and Technical Information 
(VINITI), 8814-~87, 16.12.87.). 

2. Construction of the solution. We Shall seek the solution in the form 

U (5, t) = P [VI (2, t) = P, [VI (x, 1) + Pz fY1 (x, 1) (2.1) 

V’(Z) is a first-order Bessel function). 
It can be verified that the function m (rt t) defined in this manner is regularatinfinity, 

belongs to the smoothness class K and satisfies Eq.Cl.1) and conditions (1.2) intheclassical 
sense and the conditions 1) and 2) cited in the definition. Moreover, the formulae 

d,,u (.z', t) = Y (x', t) - w&,~ * v (I', t) 
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Dt” (vu lx’, t)) = DtkV [VI (z’, t) (k = 0, 1, 2) 

S,J = - S:” J, (a) a-’ da 

hold in w,r(~,) 

Here V is the continuous extension oftheintegral (2J.P s v (Y') I x’ - y’ I-‘dy’ on L2 (Z,) 
z. 

which is considered as an operator on CO-(Z,) in Lz (X0). An asterisk denotes convolution 
with respect to time. 

From (1.7), we obtain the equation for v (5'9 1) 

v - o,S,t * v + (Dt2 + coo?) GVv = Gf (2.2) 

v (x’, t) E cp (IO, Tl, iv*1 (Z,)), VT > 0 

It is known /5/ that V is a bound operator from Lr(z0) in war (X0) - It can be shown 
that ker V=O and 

(V% cP)L$,e., > 0, t'(+J E Lz (2,) 

It is obvious from the definition of the operator C that it is symmetric and positive in 

W,' (Zcl). By virtue of this and the inequalities (1.6), we conclude /4/ that there exists 
a square root G'/* of the operator G which is bounded, positive and symmetric operator in 

Wz' (Zcl). The equality 

II G"YJ II+ = II cp IIL*(&), vq E W2.l (Z,) 

is obvious. 
As before, the extension of G'/* with respect to continuity onto the whole of &(X0) is 

denoted by G'/*. Let us now consider the operator G%VG% in Lz. (X0). It is obvious that 
it is positive and symmetric in Lz(Z,), that it acts from L,(Z,) into W,r(Z,) and that 
the estimate 

II G”lVG”~v II+ < C II cp IIL.w (2.3) 
holds. 

The complete continuity of the operator G'I*VG% in L,(X,) follows from Rellich's 
theorem and the estimate (2.3). Since kerG = ker V = 0, ker G’/*VG’f* = 0. 

It follows from what has been said above that there exists a complete system of eigen- 
functions {(Pi} of the operator G’laVG’J~ which is orthonormalized in L,(2,) and, moreover, 
h,GI~VG’kp, = ‘Pr and O<h,f +ca as k+m. 

The estimate 
A, = 0 (n"S) (2.4) 

is a consequence of (2.3) and the results of /I/. 
Let us now consider the functions gk = G'$$ It is seen that qr are the eigenfunctions 

of the operator GVand that hk are the eigenvalues corresponding to them. Since [91,1 Oml = 
[Gw cpml = (gkr cprn)~,~ = &,, the & from an orthonormalized system in W,' (X0). Itispossible 
to prove its completeness. 

So, the operator GVpossesses a complete system of eigenfunctions &;I which are 
orthonormalized in W,l(Z,) while the eigenvalues corresponding to $k r k, are positive 
and the estimate (2.4) is valid for them. 

Let us now turn to Eq. (2.2). We shall seek its solution in the form 

‘k’ (5’: t) = kfil ck (t) '$k b’) 

We substitute the latter series into (2.2) and multiply by qp. (2') in the sense of a 
scalar product in W21(Z,). As a result, we arrive at the problem 

c,(t) - m&l *c,(t) + h,'(S + o,+, (t) = m,,(t) 

c,(O) = --& c,(t = O)= 0 (2.5) 

Q'n (t) = 1Gf, %,I = (f. 4.)r.(r.) 

This problem is solved with the help of the Laplace transformation and the solution has 
the form /3/ 

cm(t)= h,&(t -T)On(T)dT (2J.9 
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R,(t) = & s ep'p (p2 t- wo2)-“~ (p (p2 + moey’* + h&“* dp, x > 0 
x--its 

The branch of the root (p" + ti02)'/* is selected such that (pa +o,,~)‘/* IPd+,, = o. and 
the cut joining the branch points *io, is the segment of the imaginary axis I--.io,, io,]. 

With this choice of the branch of (p" + WOY’, p = *iql, serve as the roots of the 
equation p (p" + w02)1/s + hk = 0 where qk = ((me2 + (me4 f 4hk2)‘f+2)‘k Let us now also introduce 
the quantities Yg = (((wip + 4h,")'ia - 0,~)/2)% 

Using Jordan's lemma, we transform I&(t) to the form 

R*(t) = RP)(t) + RP'@) 

This transformation enables one to represent c, 0) in the form 

c,(t) =i: cl? (t) + d? (t) 

cl:’ (t) = h, { R$’ (t - T) @,, (T) & 
0 

It can be shown that 

Y(I', t) = : cf$ (t)gk (z’) E CP’ (10, z-1, W,l(&)) 
F-1 

when 

f (2'. t) E Cc*) (IO, r1, ug_1 (X0)) n Co@) ([O, Tf, w&l) (2:,)) 

According to the construction it is seen that the density v (r', t) satisfies Eq.(2.2). 
Hence, the following theorem holds. 

Theorem 2. A solution of the problem posed in Sect.1 exists and has the form 

where &(I') is an eigenfunction of the operator Gland the ck (t) are given by formulae 

(2.6). 

We note that, by virtue of Theorem 1, the solution u(r.1) is unique. 

3. The behaviour of the solution at long times. Before engaging in a discussion 

of the behaviour of the solution at long tines, let US dwell on its structure and represent 

u (5, t) in the form 

u (2, t) = ur + na + v 

UI = P [V(U) (5, t), Ua = P, [v'@I (5, t), u = P, [v’2’1 (.2, 1) 

VW =1 ~~~~)(t)~k(z‘) (i = 1,2) 

It can be shown that ) z+(z,t) j-+0 uniformly with respect to tE[O, Tl as O*‘O at 
any point XER_~ for any T> 0 while, when o,, ==O, P [v(*)l(cz!,t) is a solution of the 

problem on surface gravitational and capillary waves in an ideal stratified liquid. Hence, 

Ul (5. t) describes internal waves. Since 

P \Y"'] (Z,l) lo,=* = P, Iv'2'1 (Gt)j,,,* = u*lo*=o 

% (x3 t) corresponds to the surface waves while v (s, t) has the sense of the contribution 

of the surface waves to the internal waves. 
Let us now consider the behaviour of the solution at long times. By virtue of Theorem 

2, this is a problem about the properties of P [vl(z,t), where v(z',t) is the density con- 

structed above. The properties of P[vI(r,t) with a density having a similar structure have 
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been studied in /3/. 

Below, we present results, the proofs of which with minor changes repeat the correspond- 

ing proofs of the paper cited in the previous footnote. 

Theorem 3. Let the function f (z’, t) E Corn (LO, co), W2-’ (co)) and be finite with respect to 

time, that is, there exists a T, such that f(x’,t) = 0, b’t> Z’,. Then, 

I ug (32, t) + ” (z, t) - u(O) (z, t)I < cx”l, z E KS, t > 0; 

F, (I) = + s q& (y’) (q*2 1 cd - y’ 12 + tq** - %2) GY” dY’ 
E, 

(We denote all constants encountered in the text by C). 

Theorem 4. Let f (d, t) E c3 (LO, m), b%',-l (2,)) n co(') (lo, w). IV,-' (2,)) and f (d, t) = 0, Vt 2 

To. 

Then, 

I u1 (t, t)I Q ct-“Z, XEK3, t>o 
It follows from Theorems 3 and 4 that, when a perturbation is finite with respect to time, 

the solution of the problem does not tend to zero as 1+ m and has the form U(O) (5, t)+ 0 (t-“1). 
Moreover, u(O) (x, t) is solely formed due to the surface waves ~~(5, t) and their contribution 
to the internal waves 0 (x9 6 When t> To, the time factor oftheterms in the series u(O)(x, 
t) have the following structure: 

sin (q&y O,,(z)cos(q,z)dz - cos(q,t) y CD,(T) sin (q,z)dr 
0 0 

Hence, u(O) (I, t) is the superposition of an infinite number of vibrations withfrequencies 

and describes some residual unsteady process. 

Let us now consider a periodic mode of excitation. 

Theorem 5. Let f (z', t) = 

tion possessing the following 

The following assertions then 

q (Gf cqe-iatt where f(d)E wael(co),. tl (t) is an embedding func- 

properties: q(O) = 0, q(t)=1 when 1 > T, > 0, dq (t)ldt E Cow 10, CO). 
hold. 

lo. If w > 00 and of q,,, VnE N, then 

) u (x, t) - v(O) (5, t) - w (z)e-iot 1 Q Ct-‘I:, x E R_s, t > 0 

20. If o<o<o,, then 

I u (z, t) - v(O) (I, t) - w (x)e-i@t 1 -+ 0 

is uniform with respect to ZEQ as t-too, where Q is an arbitrary compactum belonging to 
R-8. 

30. If 0 = q*, the solution can be represented in the form 

U(I, t) = te+n'q,(z)+ U(x,t) 

q r,in/aa, 

qn lx) = (ao:+ ‘$1 *;,, Fntx), Iu@,t)l<cC, vx~R_a, t>o 
n 

The notation 

u(O)(x, t) = +iq&,+ei'nf + a,e-'yF,(z) 

rl==l 

an*= 
%h@', 

T.' 

(00' + 4h a)"* s 
e*i(qn*o)r(qnTO)-lrl'(Z)d' 

n Cl 

R, = [Gf, $,I = (f, 1Cln)L (2,) 

w(z) = e 1 g (y') (69 I5’ - y’ p - (cd,2 - 02) z&-l” dy’ 

z. 
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was used 
The 
Let 

SOlUtiOTl 

above. 
functions F, (5) are the same as those in Theorem 3. 
us now discuss the results of Theorem 5. It follows from these results that the 
of the problem does not have a limiting amplitude, that is, in the case of an . . . . . ._ 1 . 

excitation f (x2’, tf = f fs”)q {i+Pws, where q(t) is an embedding function, no limit of the ex- 
pression eiwt u(z, t) exists as t-+00. However, if the background @n(s,t) is excluded from 
the solution u (x, t), tien, when 'o + ~a and o # oO, the above-mentianed limit will exist 
and, moreover, the nature of the convergence will depend on the ratio ofthefrequencies o 
and o,,. 

The background tia)(&:,tf is the superposition of an infinite number of vibrations with 
frequencies *p, and is formed solely from the surface waves =a f% $1 and their contribution 
to the internal waves y (% t) (see /3/). The limiting regime i@(i)exp (--iob) results from 
both the waves u, (.r,t) and v&t) and the internal waves ur(z,t). When 0 = pR, a linear 
increase in the amplitude, that is, resonance, is observed. It can be shown that, in this 
situation, l%(Gt)l<C when (x, t) ES R,_a x [O, a) and it is therefore correct to speak 
about the resonance of surface waves. The resonance frequencies form the sequence W. It 
follows from 4% and the estimates (2.4) that gn> oc and % = 0 (n'~*). The numerical values 
ofthesefrequencies are determined by the magnitudes of the Vaisala-Brunt frequency, o6 and 
the eigenvalues & of the operator GV which depends on the shape of the domain X, and the 
capillarity. 

As can be seen /3/, there is no substantial difference in the behaviour of the internal 
waves in the gravitational and gravitational-capillary cases. This does not hold in the case 
of surface waves since their limiting regimes are strongly dependent on the eigenvalues of 
the operator GV, which has a different form in each of the above-mentioned cases. In particu- 
lar, surface wave resonances will be observed at different frequencies in the gravitational 
and gravitational-capillary cases. 

The author thanks S.A. Gabov for formulating the problem and fox useful discussions. 

REFERENCES 

2. 
3. 

4. 
5. 
6. 
7. 

GABOV S.A. and SVESHNIKOV A.G., Problems of the Uynamics of Stratified Liquids, Nauka, 
MOSCOW, 1936. 

MYSHKIS .%.D, (Ed.), The Hydromechanics of Weightlessness, Nauka, MoscowI 1976. 
GABUV S.A. and SIMAKOV S.T., On the theory of surface and internal waves in a stratified 

liquid, Zh. vychisl. Mat. mat. Fiz., 29, 2, 1989. 
RIESZ F. and SZOKEFALVI-NAGY B., Lectures in Functional Analysis, Mlr, Moscow, 1979. 
MIKHLIN S.G., Linear Partial Differential Equations, Vyssh. Shkola, Moscow, 1977. 
MIZOHAMA S., Theory of Partial Differential Equations, Mir, MOSCQW, 1977. 
PARASK.& V-I., On the asymptotic form of the eigen and singular numbers of linear operate 
which increase smoothness, Mat. Sbornik, 68, 4, 1965. 

3x-s 

Translated by E.L.S. 


